Smallest Dirac eigenvalue distribution from random matrix theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential.

We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and no...

متن کامل

Overlap Dirac Operator, Eigenvalues and Random Matrix Theory

An important property of massless QCD is the spontaneous breaking of chiral symmetry. The associated Goldstone pions dominate the low-energy, finite-volume scaling behavior of the Dirac operator spectrum in the microscopic regime, 1/ΛQCD << L << 1/mπ, with L the length of the system [1]. This behavior can be characterized by chiral random matrix theory (RMT). The RMT description of the lowenerg...

متن کامل

QCD Dirac Spectra With and Without Random Matrix Theory

Recent work on the spectrum of the Euclidean Dirac operator spectrum show that the exact microscopic spectral density can be computed in both random matrix theory, and directly from field theory. Exact relations to effective Lagrangians with additional quark species form the bridge between the two formulations. Taken together with explicit computations in the chGUE random matrix ensemble, a ser...

متن کامل

Quickest Eigenvalue-Based Spectrum Sensing using Random Matrix Theory

We investigate the potential of quickest detection based on the eigenvalues of the sample covariance matrix for spectrum sensing applications. A simple phase shift keying (PSK) model with additive white Gaussian noise (AWGN), with 1 primary user (PU) and K secondary users (SUs) is considered. Under both detection hypotheses H0 (noise only) and H1 (signal + noise) the eigenvalues of the sample c...

متن کامل

The third smallest eigenvalue of the Laplacian matrix

Let G be a connected simple graph. The relationship between the third smallest eigenvalue of the Laplacian matrix and the graph structure is explored. For a tree the complete description of the eigenvector corresponding to this eigenvalue is given and some results about the multiplicity of this eigenvalue are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 1998

ISSN: 0556-2821,1089-4918

DOI: 10.1103/physrevd.58.087704